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SUMMARY OF APOLLO EXPERIMENTS ON 
PHASE ELECTRICAL PHENOMENA 

INTRODUCTION 

A s  a result of t he  e l e c t r i c a l  disturbances 
Apollo 12  launch, t he  value of fur ther  research 

LAUNCH 

experienced during the  
i n  t h i s  area w a s  recog- - 

nized and severa l  experiments were performed p r i o r  t o ,  during, and sub- 
sequent t o  t h e  Apollo 13 and Apollo 14 launches t o  study ce r t a in  aspects 
of launch phase e l e c t r i c a l  phenomena. 
performed pr imari ly  t o  study t h e  e f f ec t s  of t he  space vehicle on t h e  at- 
mospheric e l e c t r i c a l  f i e l d  during launch. To b e t t e r  define t h e  o r ig in  
of t h e  e l e c t r i c a l  charge and t h e  t r igger ing  mechanism of t h e  discharge,  
addi t iona l  experiments were performed i n  connection with t h e  Apollo 14 
launch. 

The Apollo 13 experiments w e r e  

The experiments were conducted by severa l  organizations under con- 
t r a c t  t o  t he  National Aeronautics and Space Administration. Atmospheric 
e l e c t r i c a l  f i e l d  measurements were made by t h e  New Mexico I n s t i t u t e  of 
Mining and Technology and by t h e  Stanford Research I n s t i t u t e ;  low-fre- 
quency &and very-low-frequency radio noise  measurements were made by t h e  
Stanford Research Ins t i tu te  t o  detect  corona discharges ind ica t ive  of high 
vehicle  po ten t i a l ;  and radiometric measurements of t h e  launch vehicle ex- 
haust  temperature were made by t h e  Lockheed Electronics  Company t o  calcu- 
la te  t h e  Apollo vehicle exhaust breakdown e l e c t r i c  f i e l d  s t rength.  I n  
addi t ion t o  these  experiments, measurements were made by t h e  Westinghouse 
Research Laboratories subsequent t o  Apollo 1 4  t o  acquire data fo r  t he  der- 
i va t ion  of peak current  i n  l ightning s t rokes .  This repor t ,  which consti-  
t u t e s  supplement no, 8 t o  t h e  Apollo 1 4  mission r epor t ,  summarizes these 
experiments and t h e  conclusions reached. 

. 
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ATMOSPHERIC ELECTRICAL FIELD EXPERIMENT& 

Purpose 

The atmospheric e l e c t r i c a l  f i e l d  experiment w a s  conducted during t h e  
Apollo 13 launch t o  measure t h e  e l e c t r i c a l  per turba t ions  produced by t h e  
Apollo vehicle.  The measurements showed t h e  presence of a much s t ronger  
e l e c t r i c a l  disturbance than had been expected, and t h a t  t h e  disturbance 
may have been caused by a buildup of e l e c t r o s t a t i c  charges i n  t h e  launch 
vehicle engine exhaust clouds , charge buildup on t h e  vehic le  i t se l f  , or 
a combination of both. 
launch t o  define t h e  o r i g i n  and c a r r i e r s  of t h e  charge. 

The experiment w a s  continued during t h e  A20110 14 

Experiment Con f i gur at i on 

Figures 1 and 2 show t h e  network of nine ca l ib ra t ed  e l e c t r i c a l  f i e l d  
meters i n s t a l l e d  fo r  t h e  Apollo 13 launch. Fourteen f i e l d  meters ( f i g .  3) 
were i n s t a l l e d  fo r  t h e  Apollo 1 4  launch, including one on t h e  launch um- 
b i l i c a l  tower ( f i g .  4) t o  de tec t  any charge buildup on t h e  vehic le  during 
i g n i t i o n  and during t h e  i n i t i a l  seconds a f t e r  l i f t - o f f .  Accurate timing 
s i g n a l s ,  which were not ava i lab le  f o r  Apollo 13, were provided at  most of 
t h e  Apollo 1 4  f i e l d  measurement equipment loca t ions .  
graphs of t he  launch vehicle exhaust clouds were a l so  taken during t h e  
Apollo 14 launch t o  a id  i n  t h e  i n t e r p r e t a t i o n  of t h e  da ta .  

Time-lapse photo- 

Observations and Data 

Apollo 13.- Data from t h e  e l e c t r i c a l  f i e l d  instruments during t h e  
Apollo 13 launch a re  shown i n  f igure  5 .  Very l a rge  per turba t ions  of t h e  
normal e l e c t r i c  f i e l d  were recorded on meters at s i t e s  1, 2 ,  and 3. The 
da ta  from these sites show a rap id  increase  i n  t h e  p o s i t i v e  d i r e c t i o n ,  
followed by a slower decrease. 
s i g n i f i c a n t  va r i a t ion  i n  f i e l d  i n t e n s i t y .  

Data from s i t e  4, however, do not i nd ica t e  

Excellent records at severa l  s e n s i t i v i t y  l e v e l s  w e r e  obtained at 
s i te  7. The f i e l d  per turba t ion  immediately following launch rose  t o  a 
m a x i m u m  of 1200 volts/meter i n  t h e  p o s i t i v e  d i r ec t ion  about 25 seconds 

&Data included i n  t h i s  sec t ion  were ext rac ted  from repor t s  submitted 
by M. Brook, C.  R .  Holmes and C .  B. Moore of t h e  New Mexico I n s t i t u t e  of 

Whitson of t h e  Stanford Research I n s t i t u t e .  
I Mining and Technology, and by J. E. Nanevicz, E. T.  P ie rce ,  and A. L.  



3 

I Fie ld  meter Distance from launch Azimuth, 
complex A ,  meters des 

I ’ New Mexico Tech 1 
1 415 
2 730 
3 1500 
4 2200 
5 7780 

46 
33 
355 
325 
338 

I Stanford Research Institute I 
6 
7 
8 
9 

400 
380 
850 
1810 

183 
265 
289 
290 

nplex 39A 

Figure 1.- Fie ld  meter network for Apollo 13 launch. 
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Figure 5. - Electrical field data d u r i n g  Apollo 13 launch. 
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a f t e r  l i f t - o f f ,  then reversed, reaching a negative peak of some 300 v o l t s /  
meter about 115  seconds after l i f t - o f f .  Thereaf te r ,  t h e  f i e l d  gradually 
re turned t o  the unperturbed value.  The record at s i t e  6 w a s  similar t o  
t h a t  at s i t e  7 ,  w i t h  an i n i t i a l  pos i t i ve  excursion followed by a slower 
negative excursion. T h i s  record,  however , shows l a r g e r  f luc tua t ions  , 
which could have been caused by gravel  and dust s t i r r e d  up by t h e  exhaust 
of t h e  launch vehicle  engine. 
w a s  found i n  the  v i c i n i t y  of t h e  f i e l d  meter. ) A la rge  negative f i e l d  of 
approximately minus 3000 volts/meter w a s  recorded 40 seconds a f t e r  l i f t -  
o f f  which probably r e su l t ed  from t h e  exhaust and steam clouds t h a t  tended 
t o  remain over s i t e  6.  

~ 

I ( A f t e r  launch, a quant i ty  of such debris  

Access r e s t r i c t i o n s  t o  si tes 8 and 9 ,  required t h a t  t h e  recorders f o r  
these  s i t e s  be s t a r t e d  severa l  hours p r i o r  t o  launch. 
s t r i p  char t s  had stopped feeding before  l i f t - o f f .  However, both pos i t i ve  
and negative f i e l d  measurements were recorded on t h e  s t a l l e d  char t s .  The 
magnitude of the e l e c t r i c a l  f i e l d  w a s  g rea t e r  than any t h a t  had been pre- 
viously recorded at any point  on the s t r i p  char t .  Examination of t hese  
records from s i t e s  6 and 7 ind ica ted  t h a t  t he  only large f i e l d  perturba- 
t i ons  were those accompanying launch. Therefore, t h e  peak excursions of 
t he  records at s i t e s  8 and 9 can be assumed t o  have occurred j u s t  a f t e r  
l i f t - o f f .  

Unfortunately t h e  

Apollo 14.-  P r io r  t o  the  Apollo 13 launch, (14:13:00 e . s . t .  on Apri l  
11, 1970) ,  t h e  f i e l d  meters had shown f luc tua t ions  of 100 t o  200 v o l t s /  
meter. Twenty minutes p r i o r  t o  t h e  scheduled Apollo 14 launch, cumulus 
clouds ex i s t ed  i n  t h e  launch complex area  with tops at 4600 meters. 
minutes la ter ,  t h e  cloud tops were at  5500 meters. The e l e c t r i c  f i e l d  me- 
t e r s  c l e a r l y  showed f luc tua t ing  f i e l d s ,  c h a r a c t e r i s t i c  of mildly d is turbed  
weather condition during t h i s  time. Since t h e  mission ru l e s  d id  not allow 
a launch through cumulus clouds with tops i n  excess of 3050 meters (10 000 
f t )  a 40-minute hold w a s  required before a permissible weather s i t u a t i o n  
exis ted.  A t  t h e  time of l i f t - o f f  of Apollo 14 (16:03:02.6 e . s . t .  on Jan- 
uary 31, 1971), the  sky w a s  overcast  w i t h  a few breaks i n  t h e  clouds,  and 
the  a l t i t u d e  of t h e  cloud bases w a s  about 1500 meters above sea l e v e l .  
The sur face  winds were b r i sk  a t  about 6 meters/second from an azimuth of 
about 2 6 0 ~ .  
height of about 130 meters) w a s  blowing at  about 12 meters/second from an 
azimuth of about 270O. During t h i s  per iod,  a weakly e l e c t r i f i e d  cloud 
c e l l  t o  t h e  north of t h e  launch complex w a s  being blown toward t h e  coas t .  

Ten 

The wind speed at t h e  top  of t h e  launch umbilical  tower ( a  

The exhaust from t h e  Apollo 1 4  space vehicle  produced l a rge  clouds.  
I n i t i a l l y ,  t h e  major cloud w a s  t h e  one t h a t  issued with t h e  exhaust flame 
from t h e  southern end of t he  flame trough. The sec t ion  of t h e  trough 
slopes upward toward the  south s o  tha t  it de f l ec t s  t he  exhaust at an angle 
of about 20' above t h e  hor izonta l .  The def lec ted  flame extended south 
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from t h e  vehicle  f o r  about 400 meters; however, a yellowish cloud was pro- 
j ec t ed  much fu r the r  south. 
of about 16 meters/second while moving eastward with t h e  wind. 
t r i c  f i e l d  meter under t h e  path of t h e  exhaust cloud and ins ide  the  launch 
perimeter fence ( s i t e  5 shown i n  f i g .  4 )  recorded t h e  presence of a s t rong 
negative charge i n  t h e  cloud w i t h  a f i e l d  s t rength of about 4500 vo l t s /  
meter ( f i g .  6 ) .  The recording of a negative charge continued f o r  about 
47 seconds. Wind measuring equipment near s i te  5 indicated the  presence 
of a s t rong gust of wind from t h e  northeast  with a speed of 11 meters/ 
second about 10 seconds a f t e r  t h e  aforementioned negative charge indica- 
t i o n .  
appeared at the  t i m e  of t he  wind gust ( f i g .  6 ) .  The negative charge i n  
t h e  cloud disappeared rapidly as evidenced by a very small per turbat ion 
t h a t  w a s  recorded when t h e  cloud passed t h e  southernmost f i e l d  meter at 
s i t e  4 on t h e  coast  ( f i g .  3) 30 seconds la ter .  

The cloud rose rapidly with an i n i t i a l  speed 
An elec- 

A new l o c a l  f i e l d  excursion caused by negative charge above s i t e  5 

Motion p ic tures  taken w i t h  a camera pointed downward from t h e  top  of 
t h e  launch tower toward the  south ind ica t e  t h a t  very l i t t l e  cooling water 
w a s  i n j ec t ed  onto t h e  pad south of t he  tower; t h e  pad surface appears r ed  
hot .  Debris deposited on t h e  instruments at s i t e  5 appeared t o  be frag- 
ments of f i r e  br ick  and other  non-aqueous s o l i d  materials. 

The northern opening o f t h e  flame trough d i r e c t s  t h e  main exhaust 
cloud horizontal ly .  Spray nozzles are arranged here t o  i n j e c t  severa l  
t o n s , o f  water per  second i n t o  the  cloud. I n i t i a l l y ,  the  la rge  cloud of 
exhaust and steam which formed during ign i t ion  and l i f t - o f f  rose slowly 
w i t h  i t s  center  about 400 meters north of the  launch umbilical  tower. 
This cloud grew t o  be qui te  large and rose at about 10 meters/second as 
it w a s  ca r r i ed  by t h e  wind  toward t h e  coast .  The cloud contained a dom- 
inant  pos i t ive  charge t h a t  produced a peak e l e c t r i c a l  f i e l d  in t ens i ty  at 
s i t e  2 ( f i g s .  3 and 6 )  of about 4100 volts/meter.  The e f f ec t s  of t h i s  
charge were much more pe r s i s t en t  than were those of the negative charge 
i n  t h e  southern cloud as perturbations caused by pos i t ive  charge were de- 
t e c t a b l e  at s i t e s  4 and 8 after the  negative charge had been neut ra l ized .  

The f i e l d  records from s i t e s  1 and 2 show t r a n s i e n t  per turbat ions 
superimposed on t h e  excursion produced by t h e  dominant pos i t ive  charge i n  
t h e  northern cloud. These were apparently produced by l oca l  concentrations 
of negative charge. The da ta  are not s u f f i c i e n t  t o  i d e n t i @  t h e  cause of 
these  per turbat ions.  They indica te ,  however, a complex d i s t r ibu t ion  of 
charge i n  t h e  exhaust cloud and several  d i f f e ren t  sources of charge. 

The f i e l d  records from s i t e s  2 and 3 ( f i g .  6 )  show the  e f f ec t  of t h e  
dominant pos i t i ve  charge i n  t h e  northern cloud followed by the  e f f e c t  of 
negative charge over t h e  s i t e s .  (Time-lapse photographs show a low-level 
cloud or  spray that  extended out t o  s i t e  3 at about the time of t h e  nega- 
t i v e  excursion.)  
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16:02 16:03 16:M 16:05 16:06 16:02 16:03 16:M 16:05 16:06 
Time, hr:min, e. s. t. Time, hr :min,  e.s.t. 

Note: Locations of sites a re  shown in f igure 3. 

Figure 6. - Electric f ield data d u r i n g  Apollo 14 launch 



11 

Analysis 

The following observations guided t h e  analysis  of t h e  Apollo 1 4  da ta :  

1. On t h e  evening following t h e  Apollo 14 launch, an examination of 
t h e  f i e l d  meter ground plane and sand bag bu t t r e s s  at s i t e  5 revealed a 
greyish white deposit  composed of p a r t i c l e s  ranging i n  s ize  from dust par- 
t i c l e s  t o  some having diameters exceeding 3/8 inch. 

2. A s  mentioned previously,  t h e  f i lm record obtained w i t h  t h e  camera 
pointed down and toward t h e  south s i d e  of t h e  launch umbilical tower re- 
vealed t h a t  t h e  flame trough on the south s ide  was red hot.  It a l so  showed 
t h a t  the  cooling water w a s  not turned on at ign i t i on ,  but w a s  turned on as 
t h e  vehicle  ascended. Time-lapse photographs a l so  show t h a t  t h e  launch um- 
b i l i c a l  tower cooling water w a s  not re leased i n  very great  quant i ty  u n t i l  
some 20 seconds after ign i t i on .  

3. Time-lapse photographs show t h a t  a low-level cloud or ig ina ted  at 
t h e  launch umbilical  tower after l i f t - o f f  and extended out t o  at least 
s i t e  3 at t h e  same t i m e  t h e  north cloud base w a s  wel l  above the height of 
t h e  launch umbilical  tower. 

I n  an attempt t o  ana ly t ica l ly  dupl icate  the  recorded data ,  a model 
defining t h e  boundaries and motions of t h e  northern and southern clouds 
w a s  developed and t h e  ne t  f i e l d  at each of seven s t a t ions  w a s  calculated.  
The next s t e p  w a s  t o  assume t h a t  t h e  north and south clouds moved as ob- 
served, but with constant charge. Under these  condi t ions,  it w a s  not pos- 
s ible  t o  reproduce the d e t a i l s  of the f i e l d  records seen at s i t e s  2 and 5 ;  
however, a s i m i l a r i t y  t o  t h e  f i e l d s  measured at s i t e s  4, 6 ,  and 8 w a s  evi- 
dent. Also not iceable  was t h e  fac t  t h a t  t he  southern cloud af fec ted  s i te  
5 ,  primari ly ,  and had l i t t l e  influence on other  f i e l d  meter si tes.  

The calculat iops were ref ined by assuming that  charged p a r t i c l e s  be- 
gan t o  f a l l  out of the southern cloud 14 seconds a f t e r  l i f t - o f f  with a 
f a l l  rate of 6 meters/second. 
at s i t e  5 w a s  approximated. It i s  i n t e r e s t i n g  t o  note t ha t  t h e  abrupt 
change i n  wind d i rec t ion  at t h e  t i m e  of t h e  f i n a l  negative excursion re- 
corded at s i te  5 ( f i g .  6 )  would have r e su l t ed  i n  addi t iona l  f a l l o u t  t o  
t h e  area around s i t e  5 and provides a much c loser  approximation of t h e  
recorded data.  The red-hot flame trough shown i n  photographs gives cre- 
dence t o  t h e  supposit ion t h a t  p a r t i c l e s  of f i r e  br ick  and other  debris 
were ca r r i ed  up i n t o  t h e  southern cloud and subsequently f e l l  out .  The 
model ind ica tes  t h a t  t h e  e f f e c t  of t h e  southern cloud on s i te  6 w a s  neg- 
l i g i b l e  because t h e  cloud was blown t o  t h e  east before it got very high. 
Also, the launch umbilical  tower may have had a sh ie ld ing  e f f e c t .  

With t h i s  assumption, t h e  f i e l d  recorded 
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The presence of a t h i r d  cloud carrying negative charge is necessary 
t o  explain the  negative excursions at s i t e s  1, 2 ,  and 3. The time-lapse 
photographs c l ea r ly  show t h a t  t h e  launch umbilical  tower cooling water 
w a s  t h e  or ig in  of a t h i r d  cloud. The required negative charge can be at- 
t r i b u t e d  t o  the strong p o s i t i v e  f i e l d  of t h e  northern cloud inducing a 
negative charge i n  t h e  water spray d rop le t s .  Using a line-charge model 
f o r  t h e  launch umbilical  tower water cloud, added t o  t h e  e f f e c t s  of t h e  
northern and southern clouds, it is poss ib le  t o  ca l cu la t e  t h e  observed 
negative excursions a t  si tes 2 and 3. The negative excursion at s i t e  1 
cannot be accounted for other  than  by concluding t h a t  a l o c a l  per turba t ion  
w a s  p resent .  

The f i e l d  meter on t h e  Apollo 14 launch umbilical tower ind ica t ed  a 
s m a l l  pos i t ive  value (<bo0 vol t s /meter )  a few seconds a f t e r  l i f t - o f f .  
Model measurements using a l / lbb-sca le  model of t h e  launch umbilical  tower 
and the  Apollo/Saturn vehicle i nd ica t e  tha t  , i n  t h i s  conf igura t ion ,  t h e  
launch umbilical tower f i e l d  and t h e  vehic le  p o t e n t i a l  are r e l a t e d  by v o l t s /  
f i e l d  = 20 meters. Thus, t h e  vehic le  p o t e n t i a l  i s  ca l cu la t ed  t o  be l e s s  
than 8000 vol t s  (400 volts/meter mul t ip l ied  by 20 meters).  

During the  Apollo 13 launch, t h e  instruments at s i t e s  west of t h e  
launch complex r eg i s t e red  a smooth pos i t i ve  f i e l d  increase  , succeeded by 
a l e s s  pronounced negative excursion. 
sion w a s  not evident ; however , t h e  f i e l d  va r i a t ions  occurred at approxi- 
mately equivalent times f o r  both launches. The p o s i t i v e  excursion w a s  
approximately f i v e  times g rea t e r  f o r  Apollo 13 than f o r  Apollo 1 4 ,  and 
reached m a x i m u m  when t h e  space vehic le  w a s  at a l t i t u d e s  g r e a t e r  than 1000 
meters. This observation, coupled with t h e  f a c t  t h a t  t h e  maximum elec- 
t r i c a l  f i e l d s  were observed downwind on both launches, makes it unl ike ly  
tha t  t h e  space vehicle charge w a s  t h e  dominant f a c t o r  but , r a t h e r  , t h a t  
t h e  charged clouds were the  dominant sources of t h e  e l e c t r i c  f i e l d s .  

For Apollo 1 4 ,  t h e  negative excur- 

Result s 

Apollo 13.- The Apollo 13  f i e l d  meter records show t h a t  t h e  launch of 
t h e  space vehicle produced a s i g n i f i c a n t  separation of e l e c t r i c a l  charge. 
However, because of t h e  absence of accurate timing s igna l s  and time-lapse 
photography of t h e  vehicle exhaust clouds , t h e  d i s t r i b u t i o n  of charge could 
not be ascertained. Nevertheless, t h e  data were use fu l  i n  showing t h a t  t h e  
separation of e l e c t r i c a l  charge produced at  l a m c h  coUd cont r ibu te  t o  t h e  
hazard of launching i n  a marginal weather s i t u a t i o n ,  and they were a l so  use- 
f’ul i n  t h e  in t e rp re t a t ion  of t h e  Apollo 1 4  data. 
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Apollo 14.-  The ana lys i s  of t h e  Apollo 1 4  records ind ica ted  th ree  major 
sources of e l e c t r i f i c a t i o n ,  a l l  i n  t h e  form of charge t ranspor ted  by clouds. 
The following values of charge were ca l cu la t ed  from t h e  ava i l ab le  data.* 

a. Northern cloud - 45 millicouiombs p o s i t i v e  

b.  Southern cloud - 3 millicoulombs negative 

c. Launch umbilical  cooling water cloud - 3 millicoulombs negative.  

The charge on t h e  Apollo 1 4  vehicle appears t o  make a negligable con- 
t r i b u t i o n  t o  t h e  measured f i e l d s .  
tower record with t h e  data from the  o the r  si tes ind ica ted  t h a t  t h e  charge 
on t h e  Apollo 1 4  vehic le ,  during the i n i t i a l  s tages  of ascent pas t  t h e  
launch umbilical  tower, was  only on t h e  order of 10 microcoulomb; t h i s  i s  
compatible with t h e  belief t h a t  t h e  exhaust i s  a good e l e c t r i c a l  conductor 
over a distance of about 100 meters. 

A comparison of t h e  launch umbilical  

RADIO-FREQUENCY NOISE EXPERIMENT& 

Purpose 

Instrumentation f o r  both t h e  Apollo 13 and Apollo 1 4  atmospheric e lec-  
t r i c i t y  measurements included provisions f o r  t h e  measurement of RF noise i n  
t h e  frequency range from 1 . 5  t o  120 kHz. The r a t i o n a l e  f o r  t hese  measure- 
ments w a s  t h a t ,  s ince  t h e  vehicle w a s  not instrumented f o r  onboard measure- 
ment of vehic le  p o t e n t i a l ,  various provisions f o r  remotely sensing t h e  ef- 
f e c t s  of high vehicle p o t e n t i a l  should be included i n  t h e  ground instrumen- 
t a t i o n .  
p o t e n t i a l s  a f t e r  launch , corona dischayges from t h e  vehicle s t r u c t u r e  would 
occur. If noise generated by these  discharges could be de tec ted ,  it would 
be an ind ica t ion  t h a t  t h e  vehicle p o t e n t i a l  had reached t h e  corona thresh- 
o ld  of some pa r t  of t h e  vehic le  s t ruc tu re .  

It w a s  theor ized  t h a t  , i f  t h e  vehic le  reached s u f f i c i e n t l y  high 

Experiment Configuration 

Apollo 13.- The noise measuring instrumentation f o r  Apollo 13 con- 
s i s t e d  of a loop antenna ( loca ted  near s i t e  7 i n  f i g .  2 )  feeding a s e t  of 
f i v e  fixed-tuned rece ivers .  The output of each rece iver  w a s  recorded on 
one channel of a s t r i p  char t  recorder a l s o  used t o  record s i t e  7 s t a t i c  

*Calculations were made by M. Brooks. 
&Data included i n  t h i s  section were ex t rac ted  from a repor t  submitted 

by J. E.  Nanevicz, E .  T .  P ie rce  and A. L. Whitson of t h e  Stanford Research 
I n s t i t u t e .  
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e l e c t r i c  f i e l d  data. Unfortunately, t h e  experiment w a s  planned so near 
t h e  launch date t h a t  it w a s  not poss ib le  t o  provide range timing s igna l s  
t o  the  recorders.  

Apollo 14 . -  To gain addi t iona l  confidence i n  t h e  functioning of t h e  
noise measuring system, provisions were made on t h e  launch of Apollo 14 
t o  use a broadband t ape  recorder t o  record t h e  output of t h e  loop antenna 
preamplifier.  T h i s  technique eliminates microphonics generated wi th in  t h e  
rece ivers  by the  high acoustic noise f ie lds  assoc ia ted  with t h e  launch. 
I n  addi t ion ,  an electric-dipole-type antenna system w a s  i n s t a l l e d  near t h e  
loop antenna loca t ion .  
RF noise data from receiving antenna through recorder.  To provide in fo r -  
mation on v ib ra t iona l  noise l e v e l s ,  an accelerometer w a s  i n s t a l l e d  on t h e  
loop antenna preamplifier housing and i t s  output w a s  recorded on a t r a c e  
of t h e  tape  recorder. F ina l ly ,  timing s igna l s  were provided t o  both t h e  
tape recorder and t h e  s t r i p  char t  recorder.  

This provided a completely independent source of 

Data 

Apollo 13.- Noise data obtained during t h e  Apollo 13  launch a re  shown 
i n  f igu re  7. Since range timing data were not recorded, it w a s  necessary 
t o  ex t rapola te  t h e  recorded da ta  t o  e s t a b l i s h  an absolute time base.  The 
noise record showed t h a t  a marked o f f s e t  i n  t h e  l e v e l s  of t h e  four h ighes t  
frequency noise channels occurred shor t ly  before t h e  pronounced change i n  
t h e  e l e c t r i c  f i e l d .  This change i n  noise  l e v e l  w a s  thought t o  have been 
caused by t h e  charged vehicle c l ea r ing  t h e  launch pad. Accordingly, l i f t -  
o f f  time on the record w a s  s e t  at  t h e  t i m e  of t h e  noise l e v e l  change. 

Apollo 14.- The RF noise measurement s t r i p  chart  recorder output data, 
obtained d u r i n g  t h e  Apollo 1 4  launch, a r e  shown i n  f igu re  8. 
obtained using t h e  loop antenna, i nd ica t e  a l a rge  increase  i n  noise on t h e  
1.5-kHz and 6-kHz channels 3 seconds af ter  i g n i t i o n ,  while t h e  51-kHz chan- 
n e l  noise d id  not begin u n t i l  2 seconds a f t e r  l i f t - o f f .  This behavior i s  
qu i t e  d i f f e ren t  than t h a t  i l l u s t r a t e d  i n  f igu re  7 where t h e  i n i t i a l  change 
i n  noise l e v e l  occurred simultaneously on a l l  channels from 6 kHz through 
120 kHz, and the peak of t h e  per turba t ion  i n  1.5-kHz noise l e v e l  occurred 
25 seconds l a t e r .  
noise receivers used during t h e  launch were set up i n  t h e  labora tory ;  t h e  
tape-recorded broadband noise data obtained from loop antenna preampl i f ie r  
flnd from the  e l e c t r i c  dipole antenna p r e m p l i f i e r  during t h e  l a m c h  irere 
then fed i n t o  t h e  rece ivers .  The rece iver  outputs obtained during t h i s  
experiment are shown i n  ' f igure 9.  

These records ,  

To va l ida t e  t h e  Apollo 1 4  s t r i p  chart  no ise  da t a ,  t h e  

It i s  of i n t e r e s t ,  f i r s t ,  t o  compare t h e  loop antenna data of f igu re  
The two records display t h e  same general  s igna l  9 with t h a t  of f i gu re  8. 

l e v e l  var ia t ions  demonstrating t h a t  rece iver  microphonics d i d  not appreci- 
ably influence t h e  data of f igu re  8. Next, a comparison w a s  made of t h e  
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loop and e l e c t r i c  dipole antenna d a t a  i n  f i gu re  9 .  Again, t h e  f i e l d  in-  
t e n s i t y  records a re  i n  good agreement. Since completely d i f f e r e n t  sensors 
and antenna preamplifiers were used i n  obtaining these  data, t h i s  agree- 
ment means t h a t  preamplifier o r  antenna microphonics can a l s o  be discounted 
as having influenced noise f i e l d  i n t e n s i t y  data.  
of f igures  7 through 9 can be considered t o  be representa t ive  of t h e  t r u e  
r ad io  noise environment during launch. 

Thus, t h e  RF noise  records 

Since t h e  1.5-kHz and 6-kHz noise s t a r t e d  sho r t ly  a f t e r  Apollo 14 ig- 
n i t i o n ,  t h i s  noise might be a t t r i b u t e d  t o  plasma processes occurring i n  
t h e  exhaust. Because 51-kHz noise d i d  not occur u n t i l  a f t e r  l i f t - o f f  , it 
was f e l t  t h a t  it might be ascribed t o  voltage breakdown processes associ-  
a t ed  with vehic le  charging a f t e r  launch. Unfortunately, t h e  51-kHz noise 
s t a r t e d  at 16:03:05 e.s. t .  , before t h e  space vehicle had c leared  t h e  launch 
umbilical  tower; and, according t o  f i e l d  meter launch umbilical  tower d a t a ,  
t h e  vehicle p o t e n t i a l  at  t h a t  time w a s  apparently too  low t o  support sub- 
s t a n t i a l  noise-producing breakdowns from t h e  vehicle.  

I n  an e f f o r t  t o  ex t r ac t  addi t iona l  information from t h e  RF noise  rec- 
ords ,  a rayspan readout w a s  made of t h e  wideband tape  recordings of both 
t h e  loop and e l e c t r i c  dipole noise. The rayspan data a re  shown i n  f ig -  
ure 10, i n  which time i s  p l o t t e d  along t h e  ho r i zon ta l  a x i s ,  frequency i s  
p l o t t e d  along t h e  v e r t i c a l  axis, and noise  f i e l d  i n t e n s i t y  i s  propor t iona l  
t o  t h e  darkness of t h e  t r a c e .  I n  order t o  assess  t h e  c h a r a c t e r i s t i c s  of 
t h e  v ib ra t iona l  environment a t  t he  loop antenna base,  a rayspan readout 
w a s  a lso  made of t h e  accelerometer s i g n a l  and is  shown i n  t h e  lower por- 
t i o n  of f igu re  10. The f igu re  ind ica tes  t h a t  t h e r e  w a s  a marked change 
i n  t h e  launch pad electromagnetic environment near t h e  time of launch. 
(The record a l s o  ind ica tes  t h a t  data were not generated by microphonics 
because the re  is  no co r re l a t ion  between t h e  RF noise data and t h e  accel- 
erometer s igna l .  ) 
white-noise-like in te r fe rence  becomes evident on the  e l e c t r i c  dipole d a t a  
i n  f igu re  10. 
four  d i s c r e t e  s igna l s  appear, s t a r t i n g  at zero frequency and, i n  1 second, 
sweeping up i n  frequency t o  rest at 2.5, 5.0,  7.5 and 10.0 kHz, as though 
some h igh- iner t ia  device such as a motor were being brought up t o  speed. 
These s igna l s  appear t o  s top  abruptly at  16:04:03. 
s igna l s  appear a t  16:02:49 ( 5  seconds before i g n i t i o n ) .  
roughly f i v e  upward-sweeping d i sc re t e  s igna l s  appear at 16 :02 : 51  ( 3 seconds 
before i g n i t i o n ) .  These s igna l s  a r e  ind ica t ive  of s t a r t i n g  of high i n e r t i a  
devices associated with various a c t i v i t i e s  such as turn ing  on pumps, re- 
corders,  e t c .  immediately p r i o r  t o  launch 

A t  16 :02 : 33 ( 2 1  seconds before i g n i t i o n )  broadband 

A l i t t l e  l a t e r ,  at 16:02:38 (16 seconds before i g n i t i o n )  

Additional d i s c r e t e  
Another group of 

Three and one-half seconds a f t e r  i g n i t i o n  (a t  16 :02: 57.5) , some broad 

It is  apparently these  lat-  
s igna l s  centered about d i s c r e t e  frequencies , appear at low frequencies i n  
f igu re  10 ( p a r t i c u l a r l y  on t h e  loop antenna).  
t e r  broad s igna l s  which were responsible f o r  t h e  signal s t rength  records 
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Figure 9.-  Apollo 14 radio noise signal strengths from broadband tape recorder data. 
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obtained on t h e  1.5- and 6-kHz noise  rece ivers  ( f i g .  9 )  because l a r g e  in- 
creases i n  s igna l  s t r eng th  occurred on t h e  rece iver  records at 16:02:57.5. 
Some of these broad, but d i s c r e t e ,  no ise  s igna l s  are c l e a r l y  modulated at  
a r a t e  varying from 1 Hz t o  2 Hz s t a r t i n g  at 16:03:05.4. This modulation 
i s  evident i n  f igu re  9 as a series of peaks i n  t h e  1.5-kHz loop antenna 
s igna l  l eve l  s t a r t i n g  16:03:05.5. This same modulation is  evident i n  t h e  
6 - k ~ ~  e l e c t r i c  dipole record,  but not i n  t h e  1.5-kHz d ipole  channel, which 
was sa tura ted  at t h i s  time. The modulated noise s igna l s  disappear abruptly 
at 16:03:28.8 i n  t h e  rayspan record of figure 10. This corresponds t o  t h e  
f i r s t  abrupt drop i n  t h e  1.5-kHz loop antenna s i g n a l  l e v e l  which occurs a t  
t h e  same time. It should be noted t h a t  t h e  rayspan readout has a l imi t ed  
dynamic range s o  t h a t  i f  t h e  gain of t h e  system had been increased ,  t h e  
records would be generally darker,  but t h e  records might i nd ica t e  t h a t  some 
s igna l  pers i s ted  a t  1 . 5  kHz after 16:03:28.8, i n  agreement with t h e  f i e l d  
s t rength  record of f igu re  9.  

Analysis and Results 

Analysis of t h e  records with respect t o  t h e  launch events revealed 
t h e  following. 

The Apollo 13 rad io  noise measurements indica’ced t h a t  a change i n  t h e  
low-frequency RF noise l e v e l  occurred at t h e  general t i m e  of launch, and 
t h a t  t h e  noise pe r s i s t ed  for 8 period of roughly 35 seconds a f t e r  onse t .  
Rudimentary shock t e s t s  were conducted t o  e s t a b l i s h  whether t h e  t r a c e  de- 
f l e c t i o n s  resu l ted  from RF noise or from microphonics (or some o the r  pro- 
cess i n  t h e  receiving system) so  t h a t  t h e  noise  data might provide i n s i g h t  
i n t o  the s t a t i c  charging of t h e  vehic le .  The t e s t s  revealed no microphonics 
noise capable of producing t h e  observed t r a c e s .  Accordingly, it w a s  de- 
cided t h a t  t he  recording t r a c e  o f f s e t s  were caused by RF noise assoc ia ted  
with the launch. 

The noise s t a r t e d  a f t e r  i g n i t i o n  and changed character 2.4 seconds 
a f t e r  l i f t - o f f  when t h e  vehic le  w a s  4.25 meters off t h e  pad. It p e r s i s t e d  
u n t i l  almost 30 seconds a f t e r  launch at which t i m e  t h e  vehic le  entered t h e  
bottom of the cloud deck at an a l t i t u d e  of 4000 f e e t .  Since,  from figure 9 ,  
t h e  s i g n a l  l eve l  of t h i s  noise w a s  v i r t u a l l y  unchanged un t i l  t h e  vehic le  w a s  
at 4000 feet a l t i t u d e ,  it is  d i f f i c u l t  t o  s ee  how a source on t h e  vehic le  
i t s e l f  could be s o l e l y  responsible f o r  t h e  observed s igna l .  I f  t h e  source 
were on t h e  vehic le ,  one would expect a considerable reduction i n  s i g n a l  
s t rength  as t h e  vehic le  climbed. 

Another poss ib le  source of t h i s  noise is  t h e  launch pad water systems 
which operated over roughly the  same time i n t e r v a l  as t h e  noise.  Figure 11 
shows t h a t ,  on Apollo 13, the  flame t rench  system B and launch umbilical  
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tower deck first system were both on from 2 seconds p r i o r  t o  l i f t - o f f  un- 
til 34 seconds a f t e r  l i f t - o f f .  
charged, and t h e  r e s u l t a n t  f i e l d  i n t e n s i t i e s  can become s u f f i c i e n t l y  high 
f o r  RF-noise-producing e l e c t r i c a l  breakdowns t o  occur ( ref .  1). Also, t h e  
e l e c t r o s t a t i c  f i e l d  measurements show conclusively t h a t  t h e  clouds , pro- 
duced by t h e  i n t e r a c t i o n  of t h e  hot exhaust with t h e  water and t h e  flame 
trenches , were highly charged. It is  p laus ib l e  t h a t  breakdowns generating 
rad io  noise could have occurred wi th in  these  clouds. The exact manner, 
however , i n  which these  processes would operate i n  t h e  high-temperature 
l i f t - o f f  environment i s  not understood. E l e c t r i f i c a t i o n  and noise e x i s t e d  
with water systems t h a t  functioned from 2 t o  34 seconds a f t e r  l i f t - o f f .  
This was not evident with t h e  water systems t h a t  were opera t ing  at various 
t i m e s  from minus 60 t o  p ius  300 seconds from l i f t - o f f .  This phenomenon i s  
not currently understood. 

It i s  known t h a t  sprayed water becomes 

I n  conclusion, on t h e  basis of t h e  meager Apollo 1 3  RF noise  d a t a  and 
t h e  more subs t an t i a l  Apollo 1 4  da ta ,  i n  t h e  frequency range s tud ied ,  t h e  
RFI generated near launch time by t h e  various launch a c t i v i t i e s  subs tan t i -  
a l l y  masks any RF noise t h a t  might be generated by e l e c t r i f i c a t i o n  of t h e  
vehicle i t s e l f .  

RADIOMETRIC MEASUREMENT OF THE APOLLO VEHICLE EXHAUST TEMPERATURE" 

Purpose 

Af te r  t h e  Apollo 12 vehicle w a s  s t ruck  by l i gh tn ing ,  a ca l cu la t ion  

A semiemperical exhaust tern- 
w a s  made of t h e  vehicle exhaust breakdown e l e c t r i c  f i e l d  s t rength  as a 
function of height above ground ( r e f .  2 ) .  
pera ture  p r o f i l e  was  used i n  t h e  exhaust breakdown e l e c t r i c  f i e l d  s t r eng th  
ca lcu la t ion .  To confirm t h i s  temperature p r o f i l e  , a radiometric measure- 
ment of t h e  exhaust.temperature of t h e  Apollo 1 4  vehicle w a s  performed. 

Experiment Con f i gur at i on 

A two-channel i n f r a r e d  radiometer w a s  used t o  measure r ad ian t  emis- 
s ion  from the  exhaust plume i n  two narrow s p e c t r a l  bands centered at 1.68 
and 1.26 microns. The radiometer w a s  i n s t a l l e d  at a loca t ion  5 miles west 
of t h e  launch pad ( f i g .  3 )  at a he ight  approximately 20 f e e t  above t h e  

of-view. The radiometer w a s  modified from i t s  normal configuration such 
I ground, and was held s t a t iona ry  while t h e  vehic le  passed through t h e  f i e l d -  

%at, included i n  t h i s  sec t ion  were ex t rac ted  from a repor t  submitted 
by C .  A.  Morgan and R. C .  Baldwin of t h e  Lockheed Elec t ronic  Company. 
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t h a t  t h e  f i e l d  of view w a s  changed from 10' c i r c u l a r  t o  rectangular  by 
placing a s l i t  a t  t h e  f i e l d  s top  which measured 0.002 inch v e r t i c a l l y  by 
0.20 inch hor izonta l ly .  The field-of-view w a s  approximately 100 f e e t  i n  
t h e  v e r t i c a l  d i rec t ion  by 1000 fee t  i n  t h e  hor izonta l  d i r ec t ion ,  and was 
centered 400 f e e t  above t h e  t o p  of t h e  Apollo 1 4  vehicle .  
w a s  determined from a r a t i o  of Planck's equation at two wavelengths 
( r e f .  3 ) .  Two lead  s u l f i d e  detectors  were used i n  t h e  a-c photo-conduc- 
t i v e  mode and t h e i r  outputs were amplified approximately 1000 times with 
t h r e e  s tages  of amplif icat ion.  Mechanical chopping of both l i g h t  beams 
w a s  used t o  modulate t h e  rad ia t ion  f a l l i n g  on t h e  de t ec to r s .  

Temperature 

A 14-track analog t ape  recorder w a s  used t o  s t o r e  t h e  radiometer out- 
Standard time code s igna l s  ( I R I G  B) were a l so  recorded. put  i n  the  f i e l d .  

I n  t h e  laboratory,  t h e  recorded radiometer s igna ls  were played through a 
peak de tec tor  and displayed by a s t r i p  char t  recorder ca l ib ra t ed  0 t o  5 
v o l t s  and 0 t o  2.5 v o l t s ,  peak-to-peak, as a function of time. 

Data 

Acquisit ion of s igna l  occurred as t h e  base of t h e  Saturn V passed 
through the  field-of-view, r e su l t i ng  i n  t h e  s igna l  voltages shown i n  f ig -  
ure 12. The peak s igna l  voltages of both channels, which were within t h e  
nominal operating l i m i t s  of t h e  e l ec t ron ic s ,  were 5 .1  v o l t s  f o r  t h e  1.26- 
micron channel and 4 . 3  vo l t s  for  t h e  1.68-micron channel. 

Using t h e  ca lcu la t ion  technique described i n  reference 3, t h e  t e m -  
pera ture  t i m e  p r o f i l e  of f igure  13 w a s  computed. The peak temperature 
w a s  2560' K.* 
1480' K.  Within 2 seconds of enter ing t h e  field-of-view, t h e  temperature 
decreased u n t i l  it w a s  lower than t h e  capab i l i t y  of t h e  instrument t o  re- 
spond, approximately 1000' K. 

The exhaust entered the  field-of-view at  a temperature of 

In  figure 13,  t h e  temperature i s  seen t o  decrease over t h e  period 
of 1 4 . 1  seconds t o  14 .6  seconds after l i f t - o f f ,  j u s t  p r i o r  t o  t h e  exhaust 
plume enter ing t h e  field-of-view. One explanation f o r  t h i s  phenomenon 
might be t h a t  t h e  Saturn V ign i t i on  produced flames, hot gas ,  and hot  dust  
p a r t i c l e s  which extended i n t o  the field-of-view and then d iss ipa ted ,  pro- 
ducing t h e  observed temperature decrease.  

Measurement prec is ion  as determined from gain-versus-voltage r a t i o s  
with blackbody temperature as a parameter r e s u l t s  i n  uncer ta in t ies  of 
15' K at 1410' K ,  105' K' at 1950' K and 250' K at t h e  nominal peak tem- 
pera ture  of 2560' K. 

"Optical pyrometer measurements of peak plume temperature performed 
by D r .  E. P h i l l i p  Krider,  University of Arizona, y ie lded  a value of 244e0 K. 
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Analysis and Results 

I n  f igure 1 4 ,  t he  in f r a red  radiometer da ta  are compared with Boeing 
Company measurements on a s ing le  F-1 engine and t h e  semiemperical calcu- 
l a t i o n  of t h e  temperature p r o f i l e  mentioned previously.  
da ta  ind ica te  t h a t  t h e  temperature decay drops s i g n i f i c a n t l y  as a funct ion 
of dis tance behind t h e  e x i t  plane of t h e  engines as compared t o  t h e  cal-  
culated values which were based on t h e  s ing le  F-l engine data .  There are 
a number of p o s s i b i l i t i e s  which might explain t h e  d i f fe rences :  F i r s t ,  t h e  
Boeing Company da ta  were obtained from a hor izonta l  f i r i n g  engine as com- 
pared t o  the v e r t i c a l  Saturn V launch. Second, perhaps t h e  Boeing Company 
f i r i n g  represented an exhaust with more carbon than w a s  present  during t h e  
Apollo 14 launch, with t h e  r e s u l t  t h a t  t h e  blackbody r ad ia t ion  d i d  not  ex- 
tend as far down t h e  Apollo 14 exhaust. 
urement techniques and accuracies could account f o r  t h e  incons is tenc ies .  

The experiment 

Third,  perhaps differences i n  meas- 

Calculated values of t h e  probable upper and lower l i m i t s  of t h e  ex- 
haust conductivity a re  shown i n  f igure  1 5 .  These estimates were obtained 
using the  temperature from f igu re  14 and the  t h e o r e t i c a l  approach described 
i n  reference 2. The ca lcu la t ions  show t h a t  t h e  v i s i b l e  exhaust (which ex- 
tends downward about 800 f e e t )  is  a r e l a t i v e l y  good conductor. 
peratures  lower than about 400° K ,  t he re  a re  negl ig ib le  f r e e  e lec t rons  
and hence the conductivity i s  due e n t i r e l y  t o  ions.  

For t e m -  

I n  t h e  b r igh te s t  pa r t  of t h e  v i s i b l e  exhaust (which extends from 100 
t o  200 f ee tbe low t h e  exhaust e x i t  plane)  t h e  e lec t ron  and ion dens i t i e s  
a re  probably between lo8 and 1011 per  cubic centimeter.  
f a l l  t o  about 106 per  cubic centimeter at t h e  bottom of t h e  v i s i b l e  ex- 
haus t . 

Ion dens i t i e s  

MEASUREMENT OF LIGHTNING ELECTRIC FIELDS& 

Purpose 

Measurements of rad ia t ion  f i e l d s  r e s u l t i n g  from l igh tn ing  s t rokes  
were made at t h e  Kennedy Space Center i n  June and Ju ly  of 1971 t o  acquire 
da ta  from which peak l igh tn ing  channel currents  might be derived. 

a Data included i n  t h i s  sec t ion  w e r e  ex t rac ted  from a report  submitted 
by Martin A. Uman of Westinghouse Research Laboratories.  
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Analytical  techniques ( ref ,  4) have been developed which show how re- 
t u r n  s t roke  l igh tn ing  cur ren ts  can be obtained from t h e  measured magnetic 
o r  r ad ia t ion  f i e l d s  of l i gh tn ing .  By assuming t h a t  t h e  l i gh tn ing  channel 
a c t s  as a v e r t i c a l  transmission l i n e  and t h a t  r ad ia t ion  fields are being 
measured, t h e  following expression r e l a t e s  peak channel cur ren t  (I ) t o  
peak e l e c t r i c  f i e l d  (E >. P 

P 
16.5 D E c 

amperes - 
IP - V 

where D is  t h e  d is tance  i n  kilometers from t h e  measurement poin t  t o  t h e  

ve loc i ty  i n  meters pe r  second, and Ep i s  measured i n  v o l t s  pe r  meter. 
Thus, t o  determine peak cu r ren t ,  E p ,  D and v must be known. 

l o c i t y  (v> w a s  assumed which results i n  t he  minimum vallie f o r  cur ren t  
( I p ) .  
(ref.  5 )  give a range f o r  c/v of 1 . 5  t o  10. 
t h e  ana lys i s .  For subsequent strokes i n  multiple s t roke  f l a s h e s ,  Schonland 
(ref. 6 )  gives a range of c/v of 2.7 t o  12.5; t he re fo re ,  2.7 w a s  used. 

l i gh tn ing ,  c i s  t h e  speed of l i g h t  ( 3  x 10 8 m/sec), v i s  t h e  r e tu rn  s t roke  

For purposes of ana lys i s ,  a maximum value f o r  t h e  r e t u r n  s t roke  ve- 

For first s t rokes  i n  multiple-stroke f lashesb ,  Schonland e t  al. 
Therefore, 1 . 5  w a s  used i n  

Experiment Configuration 

The e l e c t r i c  f i e l d  w a s  measured with an antenna and recording system 
having an accuracy of 215 percent and a time reso lu t ion  of 0.5 microsec- 
ond. 
l i m i t e d  s t roke  distances t o  1 5  kilometers and sever ly  l imi t ed  t h e  number 
of accurate d is tance  ranges obtained. Occasionally, an i s o l a t e d  d i s t a n t  
storm w a s  present making poss ib le  a moderately accurate l i gh tn ing  d is tance  
determination from radar  weather data.  Also, a few ranges were obtained 
photographically using two cameras separated by seve ra l  kilometers.  

The d is tance  (D) was determined by using thunder ranging which 

Data and Analysis 

E l e c t r i c  f i e l d  waveforms and good d is tance  ranges were obtained f o r  
164 s t rokes  comprising 39 f lashes .  
f e r e n t  days and represent l i gh tn ing  over both land  and water. The f l a shes  

These da ta  were taken on e igh t  dif-  

bA complete l i gh tn ing  discharge , generally l a s t i n g  0.5 second, i s  
c a l l e d  a f l a s h .  
t e n t  discharges c a l l e d  s t rokes .  

A flash is made up, on t h e  average, of 3 or 4 in te rmi t -  



I 30 . 

s tudied  were between 1.1 and 32 kilometers i n  d is tance .  
t h e  data (96 strokes comprising 18 f l a s h e s )  were obtained on J u l y  19,  1971. 
Lightning during t h e  Ju ly  19 storm w a s  between 1.1 and 10 kilometers dis-  
t a n t .  The storm was probably t h e  most ac t ive  f o r  which data were taken. 

The majority of 

Information on minimum values of peak current as computed from t h e  
preceding equation, using m a x i m u m  s t roke  v e l o c i t i e s ,  i s  shown i n  f igu re  16.  
Also indicated i n  f igu re  16 a re  t h e  current r ise-t imes (zero t o  peak) f o r  
t h e  l a r g e r  peak cur ren ts .  

A l l  currents over 60 kA i n  f igu re  16 were from t h e  Ju ly  19 storm. The 
measured median peak cur ren t  i n  t h a t  storm w a s  55 kA. A l l  cur ren ts  over 
85 kA were due t o  subsequent s t rokes .  
of Ju ly  19 was 16 kA. 

The median of all da ta  except t h a t  
The median of all t h e  da t a  w a s  38 kA. 

Two major measurement e r r o r s  a re  such as t o  produce a minimum value 
of peak current.  
measured w i l l  be smaller than i f  it i s  v e r t i c a l  (for t h e  same channel cur- 
r e n t ) ,  and hence a smaller cur ren t  than a c t u a l  w i l l  be computed. This er- 
ror should be l e s s  than 40 percent.  
i n  a s l i g h t  underestimation of t h e  d is tance  t o  t h e  main cur ren t  channel 
since sound i s  heard f i r s t  from t h e  neares t  branches or in-cloud channels. 
This e r r o r  becomes l a r g e r  as t h e  s t rokes  come c lose r  t o  t h e  recording 
source. I n  t h e  present data the  e r r o r  probably does not exceed 20 percent .  
The measuring system i t s e l f ,  as previously stated,  i s  accurate t o  215 per- 
cent.  

(1) If t h e  channel i s  not v e r t i c a l ,  t h e  e l e c t r i c  f i e l d  

( 2 )  Thunder ranging generally results 

The maximum r e t u r n  s t roke  v e l o c i t i e s  used were taken from data ob- 
t a ined  i n  South Afr ica  and represent the  m a x i m u m  of 14 f i r s t  s t rokes  and 
an unstated number of subsequent s t rokes .  It i s  not l i k e l y  t h a t  r e tu rn  
s t roke  ve loc i t i e s  i n  F lor ida  a re  much d i f f e ren t  from those  i n  South A f -  
r i c a ,  but it is a poss ib le  uncer ta in ty .  Return s t roke  v e l o c i t i e s  cannot 
exceed t h e  speed of. l i g h t .  I f  , f o r  example, subsequent-stroke return- 
s t roke  ve loc i t i e s  were equal t o  t h e  speed of l i g h t ,  then a l l  t h e  peak cur- 
r en t s  over 85 kA i n  f igu re  16 would be a f a c t o r  of 2.7 less than shown. 

The minimum peak cur ren ts  presented should not be considered an ade- 
quate s t a t i s t i c a l  sample i n  any sense,  as t h e  data sample i s  much too  s m a l l .  

Results 

Probably t h e  most s i g n i f i c a n t  aspect of t h e  present work i s  t h e  iden- 
t i f i c a t i o n  of unusually l a rge  cur ren ts  with very fast  r i s e  t i m e s .  Five 
minimum peak cur ren ts  have been measured between 140 and 160 k A .  Since 
the maximum probable r e tu rn  s t roke  v e l o c i t i e s  were used, t h e  chances a r e  
good t h a t  one or more of t hese  cu r ren t s ,  as w e l l  as some of t h e  lower cur- 
r e n t s ,  were i n  the  200 t o  400 kA range. The h ighes t  cur ren ts  previously 
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recorded anywhere i n  t h e  world a re  near 200 kA ( ref .  7 ) .  
imum value for  t he  m a x i m u m  current  ra te-of-r ise  (average from zero t o  peak) 
of about 300 kA/psec (152 kA i n  l e s s  than 0.5 psec) w a s  measured. 
highest  value of current  ra te-of-r ise  previously reported is  80 kA/psec 
( r e f .  8 )  and represents ,  not t h e  average from zero t o  peak, but  t h e  m a x i -  
mum during the  current  r ise t o  peak. This measurement w a s  of t h e  current  
produced by a s t roke  i n  a shunt on a tower top  i n  Lugano, Switzerland. 

Fur ther ,  a min- 

The 

CONCLUSIONS 

The i n t e n s i t i e s  of t h e  e l e c t r i c  f i e l d s  produce2 by t h e  Apollo vehicle  
exhaust clouds a re  similar t o  those produced by ac t ive  thunderstorms, but  
t h e i r  extent  i s  f a r  less than those of na tu ra l ly  e l e c t r i f i e d  clouds s o  t h a t  
t he  e l e c t r i c  energy s to red  i n  t h e  exhaust clouds is  appreciably l e s s  than 
t h a t  req i r e d  f o r  l i gh tn ing  t o  occur. It w a s  estimated t h a t  no more than 

Apollo 14 .  
more. 
h i c l e s  i s  s ign i f i can t  and could i n t e r a c t  w i t h  na tu ra l ly  e l e c t r i f i e d  clouds 
t o  cause a hazard such as t h a t  experienced on Apollo 12. 

8 Elements of na tu ra l  l i gh tn ing  usual ly  r e l ease  10 jou les  or 
about 10 Y joules  of e l e c t r i c a l  energy w a s  s to red  i n  t h e  clouds produced by 

However, t he  e l e c t r i f i c a t i o n  produced by t h e  launch of Apollo ve- 

The Saturn V exhaust can be considered a good conductor f o r  a d is tance  
beyond t h e  engine e x i t  plane f o r  approximately 200 t o  300 f e e t .  

The measured e l e c t r i c  f i e l d s  of l igh tn ing  s t rokes  at  t h e  Kennedy Space 
Center ind ica te  current  r i s e  r a t e s  as high as 300 kA/psec with peak cur- 
r en t s  i n  excess of 160 kA. 
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